链表的模拟实现
单向链表模拟实现
public class MyLinkedList {
static class Address {
public int val;
public Address address;
public Address(int val) {
this.val = val;
}
}
public Address head;
public void createLinked() {
Address node1 = new Address(12);
Address node2 = new Address(23);
Address node3 = new Address(34);
Address node4 = new Address(45);
Address node5 = new Address(56);
node1.address = node2;
node2.address = node3;
node3.address = node4;
node4.address = node5;
this.head = node1;
}
public void addFirst(int data) { //头插法
Address node = new Address(data);
node.next = head;
head = node;
}
public void addLast(int data) { //尾插法
Address node = new Address(data);
Address cur = head;
if (head == null) {
head = node;
return;
}
while (cur.next != null) {
cur = cur.next;
}
cur.next = node;
}
public void addIndex(int index, int data) { // 任意位置插⼊,第⼀个数据节点为0号下标
int size = size();
int count = 1;
if (index < 0 || index > size) {
return;
}
if (index == 0) {
addFirst(data);
return;
}
if (index == size) {
addLast(data);
return;
}
Address node = new Address(data);
Address cur = head;
while (count != index) {
cur = cur.next;
count++;
}
node.next = cur.next;
cur.next = node;
}
public boolean contains(int key) { // 找是否包含关键字 key是否在单链表当中
Address cur = head;
while (cur != null) {
if (cur.val == key) {
return true;
}
}
return false;
}
public void remove(int key) { // 删除第⼀次出现关键字为 key的节点
Address cur = head;
if (head == null) { // 如果链表为空
return;
}
if (cur.val == key) { // 如果第一个元素为
head = cur.next;
return;
}
while (cur.next != null) {
if (cur.next.val == key) {
break;
}
cur = cur.next;
}
if (cur.next != null) {
cur.next = cur.next.next;
}
}
public void removeAllKey(int key) { // 删除所有值为 key的节点
if (head == null) {
return;
}
Address prev = head;
Address cur = head.next;
while (cur != null) {
if (cur.val == key) {
prev.next = cur.next;
cur = cur.next;
} else {
prev = prev.next;
cur = cur.next;
}
}
if (head.val == key) {
head = head.next;
}
}
public int size() { // 得到单链表的⻓度
Address cur = head;
int count = 0;
while (cur != null) {
count++;
cur = cur.next;
}
return count;
}
public void clear() { // 清除单链表
head = null;
}
public void display() { // 打印单链表
Address cur = head;
while (cur != null) {
System.out.print(cur.val + " ");
cur = cur.next;
}
System.out.println();
}
}
双向链表模拟实现
public class MyLinkedList {
static class ListNode {
public int val;
public ListNode prev;
public ListNode next;
public ListNode() {
}
public ListNode(int val) {
this.val = val;
this.prev = null;
this.next = null;
}
}
public ListNode head;
public ListNode last;
public void addFirst(int data) { // 头插法
ListNode node = new ListNode(data);
if (head == null) {
head = node;
last = node;
} else {
node.next = head;
head.prev = node;
head = node;
}
}
public void addLast(int data) { // 尾插法
ListNode node = new ListNode(data);
if (head == null) {
head = node;
last = node;
} else {
last.next = node;
node.prev = last;
last = node;
}
}
public void addIndex(int index, int data) { //任意位置插⼊,第⼀个数据节点为0号下标
if (index < 0 || index > size()) {
return;
}
if (index == 0) {
addFirst(data);
return;
}
if (index == size()) {
addLast(data);
return;
}
ListNode cur = head;
ListNode node = new ListNode(data);
int count = index;
while (count-- != 0) {
cur = cur.next;
}
node.next = cur;
node.prev = cur.prev;
cur.prev.next = node;
cur.prev = node;
}
public boolean contains(int key) { // 查找是否包含关键字 key是否在单链表当中
ListNode cur = head;
while (cur != null) {
if (cur.val == key) {
return true;
}
cur = cur.next;
}
return false;
}
public void remove(int key) { // 删除第⼀次出现关键字为 key的节点
ListNode cur = head;
if (cur.val == key) { // 判断第一个
head = head.next;
return;
}
while (cur.next != null) { // 判断中间部分
if (cur.val == key) {
cur.prev.next = cur.next;
cur.next.prev = cur.prev;
return;
}
cur = cur.next;
}
if (cur.val == key) { // 判断最后一个
cur.prev.next = null;
last = last.prev;
}
}
public void removeAllKey(int key) { // 删除所有值为 key的节点
ListNode cur = head;
while (cur != null) {
if(cur.val == key) {
if(cur == head) {
//删除头节点
head = head.next;
if(head == null) {
//只有一个节点的情况下
last = null;
}else {
head.prev = null;
}
}else {
//删除中间和尾巴
if(cur.next == null) {
//尾巴
cur.prev.next = cur.next;
last = last.prev;
}else {
cur.prev.next = cur.next;
cur.next.prev = cur.prev;
}
}
//return;
}
cur = cur.next;
}
}
public int size() { // 得到单链表的⻓度
ListNode cur = head;
int count = 0;
while (cur != null) {
count++;
cur = cur.next;
}
return count;
}
public void display() {
ListNode cur = head;
while (cur != null) {
System.out.print(cur.val + " ");
cur = cur.next;
}
System.out.println();
}
public void clear() {
ListNode cur = head;
while (cur != null) {
ListNode curN = cur.next;
cur.prev = null;
cur.next = null;
cur = curN;
}
head = null;
last = null;
}
}
链表的使用
链表的常用方法
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class Test {
public static void main(String[] args) {
List<Integer> ArrayList = new ArrayList<>();
ArrayList.add(999);
LinkedList<Integer> list = new LinkedList<>();
list.add(12);
list.add(34); // 尾插元素
list.add(2, 45); // 在指定下标插入元素
list.addAll(ArrayList); // 尾插元素
list.remove(2); //
list.remove((Integer)999); // 删除第一个遇到的元素
list.get(0); // 获取指定下标元素
list.set(0, 999); // 设置指定下标元素
System.out.println(list.contains(999)); // 判断是否包含某个元素
System.out.println(list.indexOf(999)); // 返回第一个指定元素所在下标
System.out.println(list.lastIndexOf(999)); // 返回最后一个指定元素所在下标
list.subList(0, 1); // 截取部分链表
list.clear(); // 清空链表
}
}
链表的遍历
import java.util.Iterator;
import java.util.LinkedList;
import java.util.ListIterator;
public class Test {
public static void main(String[] args) {
LinkedList<Integer> list = new LinkedList<>();
list.add(1);
list.add(2);
list.add(3);
list.add(4);
list.add(5);
Iterator<Integer> it = list.iterator();
while (it.hasNext()) {
System.out.print(it.next() + " ");
}
System.out.println();
Iterator<Integer> lit = list.listIterator();
while (lit.hasNext()) {
System.out.print(lit.next() + " ");
}
System.out.println();
ListIterator<Integer> lit2 = list.listIterator(list.size());
while (lit2.hasPrevious()) {
System.out.print(lit2.previous() + " ");
}
System.out.println();
}
}
两种常用内部类
静态内部类
public class OuterClass {
public int data1; // 数据1
public static int data2; // 静态数据2
static class staticInnerClass { // 静态内部类无法访问外部变量
public void innerMethod() {
data1 = 1; // error
data2 = 1;
}
}
public static void main(String[] args) {
OuterClass.staticInnerClass staticInnerClass = new staticInnerClass(); // 静态类的创建
staticInnerClass.innerMethod(); // 静态方法的访问
}
}
匿名内部类
interface Greeting {
void greet();
}
public class OuterClassAnonymous {
public static void main(String[] args) {
Greeting greeting = new Greeting() { // 匿名内部类在声明时完成实例化,且只使用一次
public static int a = 10; // 内部类的静态变量
@Override
public void greet() {
System.out.println("hello");
}
}; //注意匿名类最后要加分号
}
}
参与讨论
(Participate in the discussion)
参与讨论